cách chứng minh 2 tam giác đồng dạng

Phương pháp minh chứng nhị tam giác đồng dạng và phần mềm.

gia su toan lop 8 - nhị tam giac dong dang

Bạn đang xem: cách chứng minh 2 tam giác đồng dạng

các tình huống đồng dạng của tam giác thông thường :

Trường ăn ý đồng dạng 1 : 3 cạnh ứng tỉ trọng với nhau (c – c – c)

xét ∆ABC và ∆DEF, tớ sở hữu :

\frac{AB}{DE} =\frac{AC}{DF} =\frac{BC}{EF}

=> ∆ABC ~ ∆DEF (c – c – c)

Trường ăn ý đồng dạng 2 : 2 cạnh ứng tỉ trọng cùng nhau – góc xen thân mật nhị cạnh tự nhau(c – g – c)

xét ∆ABC và ∆DEF, tớ sở hữu :

\frac{AB}{DE} =\frac{AC}{DF}

\widehat{A}=\widehat{D}

=> ∆ABC ~ ∆DEF (c – g – c)

Trường ăn ý đồng dạng 3 : nhị góc ứng tự nhau(g – g)

xét ∆ABC và ∆DEF, tớ sở hữu :

\widehat{A}=\widehat{D}

\widehat{B}=\widehat{E}

=> ∆ABC ~ ∆DEF (g – g)

II > Các ấn định lí đồng dạng của nhị tam giác vuông

1. Định lí 1 : (cạnh huyền – cạnh góc vuông)
Nếu cạnh huyền và cạnh góc vuông của tam giác này tỉ trọng với cạnh huyền và cạnh góc vuông của tam giác bại thì nhị tam giác đồng dạng.
2. Định lí 2 : (hai cạnh góc vuông)
Nếu nhị cạnh góc vuông của tam giác này tỉ trọng với nhị cạnh góc vuông của tam giác bại thì nhị tam giác đồng dạng.
3. Định lí 3 : ( góc)
Nếu góc nhọn của tam giác này tự góc nhọn của tam giác bại thì nhị tam giác đồng dạng.

giải bài bác tập luyện :

Dạng 1 : minh chứng nhị tam giác đồng dạng – hệ thức :


Bài toán 1 :

cho ∆ABC (AB < AC), sở hữu AD là lối phân giác vô. Tại miền ngoài ∆ABC vẽ tia Cx sao cho \widehat{BCx}=\widehat{BAD} . Gọi I là phó điểm của Cx và AD. cmr :

a) ∆ADB đồng dạng ∆CDI.

b) \frac{AD}{AC} =\frac{AB}{AI}

c) AD2 = AB.AC – BD.DC

GIẢI.

a)∆ADB và ∆CDI , tớ sở hữu :gia su toan lop 8 - tam giac dong dang

\widehat{BCx}=\widehat{BAD} (gt)

\widehat{D_1}=\widehat{D_2} (đối đỉnh)

=> ∆ADB ~ ∆CDI

b) )∆ABD và ∆AIC , tớ sở hữu :

\widehat{B}=\widehat{I} (∆ADB ~ ∆CDI)

\widehat{A_1}=\widehat{A_2} (AD là phân giác)

=> ∆ABD ~ ∆AIC

=>\frac{AD}{AC} =\frac{AB}{AI}

c)=> AD.AI = AB.AC (1)

mà : \frac{AD}{CD} =\frac{BD}{DI}  (∆ADB ~ ∆CDI )

=> AD.DI = BD.CD (2)

từ (1) và (2) :

AB.AC – BD.CD = AD.AI – AD.DI = AD(AI – DI ) = AD.AD = AD2


bài toán 2 :

Cho tam giác ABC vuông bên trên A, sở hữu lối cao AH . minh chứng những hệ thức :

  1. AB2 = BH.BC và AC2 = CH.BC
  2. AB2 +AC2 = BC2
  3. AH2 = BH.CH
  4. AH.BC = AB.AC

Giải.

hai tam giac vuong dong dang

gia su toan lop 8

1. AC2 = CH.BC :

Xét nhị ∆ABC và ∆ HAC, tớ sở hữu :

\widehat{BAC} =\widehat{ AHC} =90^0

\widehat{C} là góc cộng đồng.

=> ∆ABC ~ ∆HAC (g – g)

=> \frac{AC}{HC}=\frac{BC}{AC}

=> AC2 = CH.BC (1)

Cmtt : AB2 = BH.BC (2)

2. AB2 +AC2 = BC2

Từ (1) và (2), tớ sở hữu :

AB2 +AC2 = BH.BC + CH.BC = (BH + CH)BC = BC2

3.AH2 = BH.CH :

Xét nhị ∆HBA và ∆ HAC, tớ sở hữu :

\widehat{BHC} =\widehat{ AHC} =90^0

\widehat{ABH} =\widehat{ HAC}  cùng phụ \widehat{BAH}

=> ∆HBA ~ ∆HAC (g – g)

Xem thêm: nông kiều có phúc

=> \frac{HA}{HC}=\frac{HB}{HA}

=> AH2 = BH.CH

4. AH.BC = AB.AC :

Ta sở hữu : \frac{HA}{AB}=\frac{AC}{BC} (∆ABC ~ ∆HAC)

=> AH.BC = AB.AC.


Dạng 2 : minh chứng nhị tam giác đồng dạng – ấn định lí talet + hai tuyến đường trực tiếp tuy nhiên song :

bài toán :

Cho ∆ABC nhọn. kẻ lối cao BD và CE. vẽ những lối cao DF và EG của ∆ADE. Chứng minh :

a) ∆ABD đồng dạng ∆AEG.

b) AD.AE = AB.AG = AC.AF

c) FG // BC

GIẢI.

a) xét ∆ABD và ∆AEG, tớ sở hữu :gia su toan lop 8 - tam giac dong dang dinh cơ li talet

BD \bot  AC (BD là lối cao)

EG \bot  AC (EG là lối cao)

=> BD // EG

=> ∆ABD ~ ∆AGE

b) => \frac{AB}{AE} =\frac{AD}{AG}

=> AD.AE = AB.AG (1)

cmtt, tớ được : AD.AE = AC.AF (2)

từ (1) và (2) suy rời khỏi :

AD.AE = AB.AG = AC.AF

c) xét ∆ABC, tớ sở hữu :

AB.AG = AC.AF (cmt)

\frac{AB}{AF} =\frac{AC}{AG}

=> FG // BC (định lí hòn đảo talet)


Dạng 3 : minh chứng nhị tam giác đồng dạng – góc ứng đều nhau :

bài toán :

Cho ∆ABC sở hữu những lối cao BD và CE rời nhau bên trên H. Chứng minh :

a) ∆HBE đồng dạng ∆HCE.

b) ∆HED đồng dạng ∆HBC và \widehat{HDE}=\widehat{HAE}

c) cho biết thêm BD = CD. Gọi M là phó điểm của AH và BC. minh chứng : DE vuông góc EM.

GIẢI.

a)xét ∆HBE và ∆HCD, tớ sở hữu :gia su toan lop 8 - nhị tam giac dong dang - goc bang nhau

\widehat{BEH}=\widehat{CDH}=90^0 (gt)

\widehat{H_1}=\widehat{H_2} (đối đỉnh)

=> ∆HBE ~ ∆HCD (g – g)

b) ∆HED và ∆HBC, tớ sở hữu :

\frac{HE}{HD} =\frac{HB}{HC} (∆HBE ~ ∆HCD)

=>\frac{HE}{HB} =\frac{HD}{HC}

\widehat{EHD}=\widehat{CHB} (đối đỉnh)

=> ∆HED ~ ∆HBC (c – g – c)

=> \widehat{D_1}=\widehat{C_1} (1)

mà : lối cao BD và CE rời nhau bên trên H (gt)

=> H là trực tâm.

=> AH \bot  BC bên trên M.

=>\widehat{A_1}+\widehat{ABC}=90^0

mặt không giống : \widehat{C_1}+\widehat{ABC}=90^0

=>\widehat{A_1}=\widehat{C_1} (2)

từ (1) và (2) : \widehat{A_1}=\widehat{D_1}

hay : \widehat{HDE}=\widehat{HAE}

c) cmtt câu b, tớ được : \widehat{A_2}=\widehat{E_2} (3)

xét ∆BCD, tớ sở hữu :

DB = DC (gt)

=> ∆BCD cân nặng bên trên D

=>\widehat{B_1}=\widehat{ACB}

mà : \widehat{B_1}=\widehat{E_1} (∆HED ~ ∆HBC)

=> \widehat{E_1}=\widehat{ACB}

mà : \widehat{A_2}+\widehat{ACB}=90^0

\widehat{A_2}=\widehat{E_2} (cmt)

Xem thêm: những câu thả thính triệu like

=>\widehat{E_1}+\widehat{E_2}=90^0

hay : \widehat{DEM}=90^0

=> ED \bot  EM.